

TX4224 产品规格书

(1.2MHZ最大电流 4A 高效率 DCDC 升压IC)

概述

TX4224是一款高效率,高PWM开关频率的DCDC转换器。芯片内置有4A, 0.07ohm功率开关管,可以提供达8V的输出电压。在输入电压3.3V,输出电压5V时,提供2A的输出电流。芯片高达1.2MHz的开关频率实现小的电感和电容,同时提供极好的动态响应。芯片内置有软启动和环路补偿,只需要很少的外部元器件实现开关应力的减小及系统的稳定性。

产品特点

☑2.5V-6V输入电压范围

☑高达4A的开关电流

☑最高输出电压 8V, SW 脚耐压最高可达 12V

☑低导通阻抗,效率高达 93%

☑内置软启动

☑具有迟滞功能的欠压锁定

☑1.2MHz的固定开关频率

☑内置过温保护

☑内置软启动与环路补偿

☑关断电流低至 1微安

☑ SOT23-6 封装

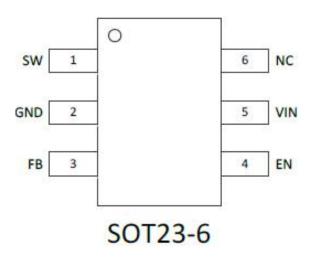
应用领域

☑扩音器、插卡音响等

☑低压音响系统、USB、2.1/2.0 多媒体音响

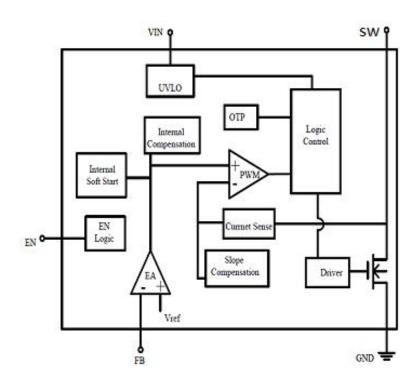
☑收音机

☑GPS

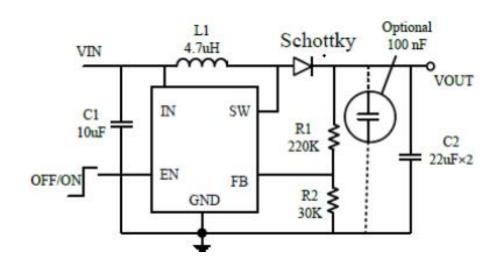

☑K歌宝

☑数码相机

☑平板电脑、手掌游戏机


管脚定义

管脚功能描述


管脚号	字符	管脚描述
1	SW	开关输出
2	GND	功率地
3	FB	输出电压反馈脚
4	EN	芯片使能信号输 入脚,高电平开启
5	VIN	电源输入
6	NC	空脚,无连接

电路框图

原理图

极限应用参数

• TX4224 极限参数表

名称	描述		参数	
VCC	供出出压	升压输入电压	2.5V至6.5V	
VCC	供电电压 -	升压输出电压	2.5V至8V	
V _I	输入电压		VCC-0.3V至VCC+0.3	
T _A	环境工作温度		-4 0℃至 +8 5℃	
T _J	结工作温度		-4 0℃至 +150 ℃	
T_{stg}	Γ _{stg} 贮藏温度		- 65 ℃至+ 1 50℃	
	焊接温度		240℃, 10S	

注: 在极限值之外的任何其他条件下, 芯片的工作性能不予保证。

电气特性

参数	描述	条件	最小值	典型值	最大值	单位
VIN	输入电压范围		2.5		6	V
Vout	升压输出范围				8	V
Isby	芯片静态电流	Vin=3V, No Switching		100		μA
Isd	芯片关断电流	Vin=3.7V, EN=0V		0.1	1	μΑ
VFB	反馈电压			0.6		V
Ilim	峰值电感电流限 制			4		A
Fosc	振荡器频率			1.2		MHz
Rdson	NMOS 导通阻抗			0.07		Ohm
VEN	使能阈值电压		1.5			V
OTP	过温保护点		130			°C
Isw	SW 脚漏电流				1	uA

应用信息

输出电压设定

如典型应用图中所示,输出电压由连接到反馈脚的分压电阻 Rfb1,Rfb2 设定, 反馈脚电压 VFB 为 0.6V, 则输出电压可以设定如下:

$$Vo = (\frac{Rfb1}{Rfb2} + 1) * 0.6$$

较大的 Rfb1,Rfb2 可降低静态功耗,选择合适的 Rfb1,Rfb2 以确保Vo不超过 8V。

功率电感的选择

在确定的 Vin, Vo 情况下, 电感量决定了电感电流的上升斜率及下降斜率。电感电流纹波率 r:

$$r = \frac{\Delta iL}{i_{L-avg}} = \frac{Ro * (1-D)^2 * D}{L * f}$$

其中 Ro 为输出负载等效阻抗, f 为 TX4224 的开关频率。函数 r=f(D) 在 1/3 处有最大值。

在其他条件不变的情况下,电流纹波率 r 与电感量 L 成反比,要保证系统工作在 CCM,必须满足 $r \leq 2$,由此 得到电感的最小值

$$L_{\min} = \frac{Ro * (1 - D)^2 * D}{2 * f}$$

而过小的电感电流纹波率,会导致大的电感量及电感体积,必须确定一个最小纹波率,由此得到电感的最大值 Lmax。

另一方面,大的纹波率导致大的电容电流有效值影响效率,需要在两者间折衷。经验表明 $r=0.3^{\sim}0.5$ 是个 合适的值。在使用小 ESR 电容时,可以增大电流纹波率以减小电感体积。

为避免电感饱和, 电感的额定电流必须大于芯片的过流限制点, TX4224 电流峰值限制典型值为 4A。

推荐使用 2.2uH^{2} 4.7 uH,饱和电流超过 5 A 的功率电感。

电源输入输出电容 Cs 的选择

升压调节器功率开关管的不断开关,会在系统输入端产生纹波,纹波的大小取决于实际应用中电流大小,系统的输入阻抗,及 PCB 布线。必须使用一个输入电容来减小这个纹波,典型条件下 10uF 或则 22uF 已足够,

若输入阻抗较大(例如输入走线很长)时,应加大输入电容值。

锂电池接入电感,并不直接接入芯片引脚,我们暂且称呼电池接入电感端为 VBAT。由于升压电源和功放均从该 VBAT 端获取电流,因此该走线需要尽可能短而粗的走线,以保证走线能承受电流并不至于损耗太大; VBAT 端还需要较大的储能电容,以使 VBAT 电压更加平稳。

推荐使用 220uF 电解电容与 10uF 钽电容并联。尽量靠近电感放置。如应用在输出功率在 5 瓦以下时,为节约成本和 PCB 面积,可仅使用 22uF-47 uF 钽电容即可。

输出二极管的选择

输出二极管的选择取决于输出电压和输出电流。二极管的平均电流等于系统的输出电流,使用的二极管的 额定电流必须大于输出电流,同时二极管上的损耗正比于二极管正向导通压降,应选取正向压降小的二极管。在二极管关断阶段,二极管的反向电压为输出电压,应选取反向耐压大于输出电压的二极管。

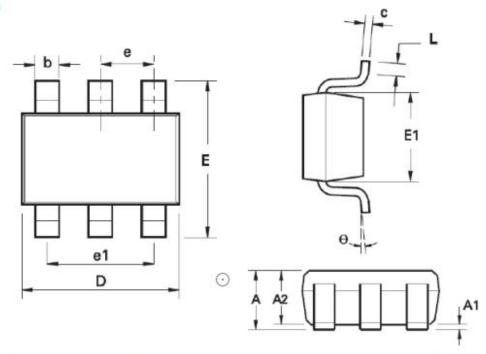
视不同应用, 推荐使用 SS32 或更高耐压更大电流的肖特基二极管。

升压输出电容 Cout 的选择

在放大器的应用中,电源的旁路设计很重要,特别是对应用方案的噪声性能及电源电压纹波抑制性能。 TX4224 需要适当的升压输出电容以确保它的高效率和减小输出纹波。升压输出电容采用低阻抗陶瓷电容,尽量靠近输出二极管,因为电路中任何电阻,电容和电感都可能影响到功率转换的效率。一个 220uF 或更大的电解电容放置在输出二极管的附近会得到更好的滤波效果。

推荐使用 220uF 电解电容与 10uF 钽电容并联。

TX4224 内置了过热保护及过压保护等功能,有效地保护芯片在异常工作状况下不被损坏。当芯片内部结温超过 130℃,芯片将关断,直到结温低于120℃,芯片重新进入正常工作状态。


PCB布局建议

- 1: SW脚到电感需要走大电流,电感必须紧靠SW脚,减小高频噪声。同时 SW脚到电感的走线要求宽且短(走线宽度不小于30mi1)。电感底下及周边禁止 走线与覆铜。特别注意模拟地线等容易受干扰的其他线要远离电感。
- 2: 肖特基二极管D1必须靠近电感和SW脚放置,在肖特基二极管负端的输出电容Co必须紧靠二极管D1的负端放置。升压电路的输出给负载以及FB反馈电阻供电时,必须先经过Co电容,禁止使用肖特基二极管负端作为升压输出。

封装信息

SOT23-6

SYMBOL		MILLMETER	2		INCHES	
STIVIDUL	MIN	NOM	MAX	MIN	NOM	MAX
A	**		1.35			0.053
A1	0.04		0.15	0.002		0.006
A2	1.00	1.10	1.20	0.039	0.043	0.047
b	0.34	**	0.43	0.013		0.017
С	0.15		0.21	0.006		0.008
D	2.72	2.92	3.12	0.107	0.115	0.123
E	2.60	2.80	3.00	0.102	0.110	0.118
E1	1.40	1.60	1.80	0.055	0.063	0.071
e	0.95 BSC			0.037 BSC		
e1	1.90 BSC			0.075 BSC		
L	0.30		0.60	0.012		0.024
θ	0		8°	0		8°

声明

芯鼎盛技术有限公司保留电路及规格书的更改权,以便为客户提供更优 秀的产品,规格若有更改,恕不另行通知。

芯鼎盛技术有限公司一直致力于提高产品质量和可靠性,然而任何半导体产品在特定条件下都有一定的失效和故障的可能,客户有责任在使用芯鼎盛产品进行产品研发时,应严格按照产品规格书的要求使用芯鼎盛产品,在进行系统设计和和整机制造时遵守安全标准并采取安全措施,以避免潜在失败风险造成人身伤害或财产损失等情况。如因客户不当使用芯鼎盛产品而造成的人身伤害或财产损失等情况,芯鼎盛公司不承担任何责任。